An ADPRS variant disrupts ARH3 stability and subcellular localization in children with neurodegeneration and respiratory failure

ADPRS 变体破坏了神经退行性疾病和呼吸衰竭患儿的 ARH3 稳定性和亚细胞定位

阅读:8
作者:Maxwell Bannister, Sarah Bray, Anjali Aggarwal, Charles Billington Jr, Hai Dang Nguyen

Abstract

ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. In this study, genetic testing via exome sequencing was used to identify the underlying disease in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. This identified a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3, confirming the diagnosis of childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS) in these two children. Mechanistically, the ARH3H182R variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and, subsequently, reduced protein expression. The ARH3H182R mutant additionally fails to localize to the nucleus, which further resulted in accumulated mono-ADP ribosylated species in cells. The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP-ribosylation in nervous system integrity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。