Generation and Characterization of a Multi-Functional Panel of Monoclonal Antibodies for SARS-CoV-2 Research and Treatment

用于 SARS-CoV-2 研究和治疗的多功能单克隆抗体组的生成和表征

阅读:5
作者:Lila D Patterson, Benjamin D Dubansky, Brooke H Dubansky, Shannon Stone, Mukesh Kumar, Charles D Rice

Abstract

The Coronavirus disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is an ongoing threat to global public health. To this end, intense efforts are underway to develop reagents to aid in diagnostics, enhance preventative measures, and provide therapeutics for managing COVID-19. The recent emergence of SARS-CoV-2 Omicron variants with enhanced transmissibility, altered antigenicity, and significant escape of existing monoclonal antibodies and vaccines underlines the importance of the continued development of such agents. The SARS-CoV-2 spike protein and its receptor binding domain (RBD) are critical to viral attachment and host cell entry and are primary targets for antibodies elicited from both vaccination and natural infection. In this study, mice were immunized with two synthetic peptides (Pep 1 and Pep 2) within the RBD of the original Wuhan SARS-CoV-2, as well as the whole RBD as a recombinant protein (rRBD). Hybridomas were generated, and a panel of three monoclonal antibodies, mAb CU-P1-1 against Pep 1, mAb CU-P2-20 against Pep 2, and mAb CU-28-24 against rRBD, was generated and further characterized. These mAbs were shown by ELISA to be specific for each immunogen/antigen. Monoclonal antibody CU-P1-1 has limited applicability other than in ELISA approaches and basic immunoblotting. Monoclonal antibody CU-P2-20 is shown to be favorable for ELISA, immunoblotting, and immunohistochemistry (IHC), however, not live virus neutralization. In contrast, mAb CU-28-24 is most effective at live virus neutralization as well as ELISA and IHC. Moreover, mAb CU-28-24 is active against rRBD proteins from Omicron variants BA.2 and BA.4.5 as determined by ELISA, suggesting this mAb may neutralize live virus of these variants. Each of the immunoglobulin genes has been sequenced using Next Generation Sequencing, which allows the expression of respective recombinant proteins, thereby eliminating the need for long-term hybridoma maintenance. The synthetic peptides and hybridomas/mAbs and quantitative antigen-binding data are under the intellectual property management of the Clemson University Research Foundation, and the three CDRs have been submitted as an invention disclosure for further patenting and commercialization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。