Microarray-based screening system identifies temperature-controlled activity of Connexin 26 that is distorted by mutations

基于微阵列的筛选系统可识别因突变而扭曲的 Connexin 26 温控活性

阅读:7
作者:Hongling Wang, Frank Stahl, Thomas Scheper, Melanie Steffens, Athanasia Warnecke, Carsten Zeilinger

Abstract

Here, we show that human Connexin 26 (hCx26 or Cx26WT) hemichannel opening rapidly enables the transport of small molecules when triggered by temperature and by compensation of the Ca2+ blockade with EDTA. Point mutations within Cx26 were analysed by a novel optical microarray-based Lucifer Yellow uptake assay or by two electrode voltage clamp (TEVC) on frog oocytes to monitor simultaneous activities of channel proteins. Point mutations L90P, F161S, R184P or K188N influenced the temperature-dependent activity drastically. Since several mutations blocked trafficking, the temperature-dependent activity of the recombinant synthesized and purified wild-type Cx26WT and Cx26K188N hemichannel was tested by liposome flux assay (LFA) and on a microarray-based Lucifer Yellow uptake assay under warm conditions (>30 °C). The data from TEVC measurements and dye flux experiments showed that the mutations gave no or only a weak activity at increased temperature (>30 °C). We conclude that the position K188 in the Cx26WT forms a temperature-sensitive salt bridge with E47 whereas the exchange to K188N destabilizes the network loop- gating filter, which was recently identified as a part of the flexible Ca2+ binding site. We assume that the temperature sensitivity of Cx26 is required to protect cells from uncontrolled release or uptake activities through Cx26 hemichannels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。