Genotyping by RAD Sequencing Analysis Assessed the Genetic Distinctiveness of Experimental Lines and Narrowed Down the Genomic Region Responsible for Leaf Shape in Endive (Cichorium endivia L.)

通过 RAD 测序分析进行基因分型评估了实验系的遗传独特性,并缩小了决定菊苣 (Cichorium endivia L.) 叶形的基因组区域

阅读:5
作者:Alice Patella, Fabio Palumbo, Samathmika Ravi, Piergiorgio Stevanato, Gianni Barcaccia

Abstract

The characterization of genetic diversity in elite breeding stocks is crucial for the registration and protection of new varieties. Moreover, experimental population structure analysis and information about the genetic distinctiveness of commercial materials are essential for crop breeding programs. The purpose of our research was to assess the genetic relationships of 32 endive (Cichorium endivia L.) breeding lines, 18 from var. latifolium (escarole) and 14 from var. crispum (curly), using heterologous Cichorium intybus-derived simple sequence repeats (SSR) markers and single-nucleotide polymorphisms (SNP) markers. We found that 14 out of 29 SSR markers were successfully amplified, but only 8 of them were related to polymorphic loci. To overcome the limitation of the low number of informative SSR marker loci, an alternative SNP-based approach was employed. The 4621 SNPs produced by a restriction site-associated DNA marker sequencing approach were able to fully discriminate the 32 endive accessions; most importantly, as many as 50 marker loci were found to distinguish the curly group from the escarole group. Interestingly, 24 of the marker loci mapped within a peripheral segment of chromosome 8 of lettuce (Lactuca sativa L.), spanning a chromosomal region of 49.6 Mb. Following Sanger sequencing-based validation, three genes were determined to carry nonsynonymous SNPs, and one of them matched a putative ortholog of AtELP1, subunit 1 of the Elongator complex. Considering that several previously characterized Elongator complex subunit mutants exhibited elongated and/or curly leaf phenotypes, this gene should be taken into consideration for a better understanding of the underlying mechanism controlling leaf shape in endive.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。