Impairment of starch biosynthesis results in elevated oxidative stress and autophagy activity in Chlamydomonas reinhardtii

淀粉生物合成受损导致莱茵衣藻氧化应激和自噬活性升高

阅读:7
作者:Quynh-Giao Tran, Kichul Cho, Su-Bin Park, Urim Kim, Yong Jae Lee, Hee-Sik Kim

Abstract

Autophagy is a self-degradation system wherein cellular materials are recycled. Although autophagy has been extensively studied in yeast and mammalian systems, integrated stress responses in microalgae remain poorly understood. Accordingly, we carried out a comparative study on the oxidative stress responses of Chlamydomonas reinhardtii wild-type and a starchless (sta6) mutant previously shown to accumulate high lipid content under adverse conditions. To our surprise, the sta6 mutant exhibited significantly higher levels of lipid peroxidation in the same growth conditions compared to controls. The sta6 mutant was more sensitive to oxidative stress induced by H2O2, whereas the wild-type was relatively more resistant. In addition, significantly up-regulated autophagy-related factors including ATG1, ATG101, and ATG8 were maintained in the sta6 mutant regardless of nitrogen availability. Also, the sta6 mutant exhibited relatively higher ATG8 protein level compared to wild-type under non-stress condition, and quickly reached a saturation point of autophagy when H2O2 was applied. Our results indicate that, in addition to the impact of carbon allocation, the increased lipid phenotype of the sta6 mutant may result from alterations in the cellular oxidative state, which in turn activates autophagy to clean up oxidatively damaged components and fuel lipid production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。