Silk fibroin as an additive for cell-free protein synthesis

丝素蛋白作为无细胞蛋白质合成的添加剂

阅读:5
作者:Marilyn S Lee, Chia-Suei Hung, Daniel A Phillips, Chelsea C Buck, Maneesh K Gupta, Matthew W Lux

Abstract

Cell-free systems contain many proteins and metabolites required for complex functions such as transcription and translation or multi-step metabolic conversions. Research into expanding the delivery of these systems by drying or by embedding into other materials is enabling new applications in sensing, point-of-need manufacturing, and responsive materials. Meanwhile, silk fibroin from the silk worm, Bombyx mori, has received attention as a protective additive for dried enzyme formulations and as a material to build biocompatible hydrogels for controlled localization or delivery of biomolecular cargoes. In this work, we explore the effects of silk fibroin as an additive in cell-free protein synthesis (CFPS) reactions. Impacts of silk fibroin on CFPS activity and stability after drying, as well as the potential for incorporation of CFPS into hydrogels of crosslinked silk fibroin are assessed. We find that simple addition of silk fibroin increased productivity of the CFPS reactions by up to 42%, which we attribute to macromolecular crowding effects. However, we did not find evidence that silk fibroin provides a protective effects after drying as previously described for purified enzymes. Further, the enzymatic crosslinking transformations of silk fibroin typically used to form hydrogels are inhibited in the presence of the CFPS reaction mixture. Crosslinking attempts did not impact CFPS activity, but did yield localized protein aggregates rather than a hydrogel. We discuss the mechanisms at play in these results and how the silk fibroin-CFPS system might be improved for the design of cell-free devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。