Chemical profiling and mechanisms of Agarikon pill in a rat model of cigarette smoke-induced chronic obstructive pulmonary disease

在香烟烟雾诱导的慢性阻塞性肺疾病大鼠模型中,对阿加里孔丸的化学成分和作用机制进行了分析

阅读:1
作者:Aizaiti Keremu ,Zulfiye Talat ,Xueying Lu ,Rahima Abdulla ,Maidina Habasi ,Haji Akber Aisa

Abstract

Background and aim: Agarikon pill (AGKP), a traditional Chinese herbal formula, and has been used for chronic obstructive pulmonary disease (COPD) treatment clinically. However, the active components and exact pharmacological mechanisms are still unclear. We aimed to investigate the therapeutic effects and mechanisms of AGKP on COPD and identify the chemical constituents and active compounds. Experimental procedure: The chemical components of AGKP were identified by ultrahigh-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS). Network pharmacology analysis was performed to uncover the potential mechanism of AGKP. The efficiencies and mechanisms of AGKP were further confirmed in COPD animal models. Results and conclusion: Ninety compounds from AGKP, such as flavonoids, triterpenoids, saponins, anthracenes, derivatives, phenyl propionic acid, and other organic acids, were identified in our study. AGKP improved lung function and pathological changes in COPD model rats. Additionally, inflammatory cell infiltration and proinflammatory cytokine levels were markedly reduced in COPD rats administered AGKP. Network pharmacology analysis showed that the inflammatory response is the crucial mechanism by which AGKP exerts therapeutic effects on COPD rats. WB and PCR data indicated that AGKP attenuated the inflammatory response in COPD model rats. AGKP reduces the pulmonary inflammatory response through the PI3K/AKT and MAPK TLR/NF-κB signaling pathways and exerts therapeutic effects via inhibition of inflammation and mucus hypersecretion on COPD model rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。