Sciatic nerve injury rebalances the hypothalamic-pituitary-adrenal axis in rats with persistent changes to their social behaviours

坐骨神经损伤使大鼠的下丘脑-垂体-肾上腺轴重新平衡,导致其社会行为发生持续变化

阅读:8
作者:M Karmina Sosa, Damien C Boorman, Kevin A Keay

Abstract

Increased glucocorticoids characterise acute pain responses, but not the chronic pain state, suggesting specific modifications to the hypothalamic-pituitary-adrenal (HPA)-axis preventing the persistent nature of chronic pain from elevating basal glucocorticoid levels. Individuals with chronic pain mount normal HPA-axis responses to acute stressors, indicating a rebalancing of the circuits underpinning these responses. Preclinical models of chronic neuropathic pain generally recapitulate these clinical observations, but few studies have considered that the underlying neuroendocrine circuitry may be altered. Additionally, individual differences in the behavioural outcomes of these pain models, which are strikingly similar to the range of behavioural subpopulations that manifest in response to stress, threat and motivational cues, may also be reflected in divergent patterns of HPA-axis activity, which characterises these other behavioural subpopulations. We investigated the effects of sciatic nerve chronic constriction injury (CCI) on adrenocortical and hypothalamic markers of HPA-axis activity in the subpopulation of rats showing persistent changes in social interactions after CCI (Persistent Effect) and compared them with rats that do not show these changes (No Effect). Basal plasma corticosterone did not change after CCI and did not differ between groups. However, adrenocortical sensitivity to adrenocorticotropic hormone (ACTH) diverged between these groups. No Effect rats showed large increases in basal plasma ACTH with no change in adrenocortical melanocortin 2 receptor (MC2 R) expression, whereas Persistent Effect rats showed modest decreases in plasma ACTH and large increases in MC2 R expression. In the paraventricular nucleus of the hypothalamus of Persistent Effect rats, single labelling revealed significantly increased numbers of corticotropin releasing factor (CRF) +ve and glucocorticoid receptor (GR) +ve neurons. Double-labelling revealed fewer GR +ve CRF +ve neurons, suggesting a decreased hypothalamic sensitivity of CRF neurons to circulating corticosterone in Persistent Effect rats. We suggest that in addition to rebalancing the HPA-axis, the increased CRF expression in Persistent Effect rats contributes to changes in complex behaviours, and in particular social interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。