Herbo-vitamin medicine Livogrit Vital ameliorates isoniazid induced liver injury (IILI) in human liver (HepG2) cells by decreasing isoniazid accumulation and oxidative stress driven hepatotoxicity

草本维生素药物 Livogrit Vital 可减少异烟肼的蓄积和氧化应激引起的肝毒性,从而改善人类肝脏 (HepG2) 细胞中异烟肼引起的肝损伤 (IILI)

阅读:5
作者:Acharya Balkrishna, Vivek Gohel, Meenu Tomer, Rishabh Dev, Anurag Varshney

Background

Tuberculosis (TB) is a leading cause of infection related mortality. Isoniazid is one of the frontline drugs for anti-TB therapy. Hepatotoxicity induced by isoniazid is a major cause of drug-discontinuation which may lead to development of resistant TB or increased mortality.

Conclusion

Treatment of hepatic cells with the herbo-vitamin medicine, Livogrit Vital, regulates IILI by modulation of oxidative and ER stress, apoptosis, and bioaccumulation of isoniazid and hydrazine. Collectively, Livogrit Vital could well be explored as an adjuvant hepatoprotective agent alongwith anti-TB medicines.

Purpose

To characterize pharmacological properties of plant-based prescription medicine, Livogrit Vital (LVV) against isoniazid-induced liver injury (IILI) using HepG2 cells. Method: Phytometabolite characterization of LVV was performed by High-performance liquid chromatography (HPLC). The effects of LVV on cytosafety, IC50 shift, oxidative stress, ER stress, apoptosis, liver injury markers, and accumulation of isoniazid and hydrazine was performed on HepG2 cells induced with isoniazid. Silymarin was used as the positive control.

Results

HPLC based phytometabolite characterization of LVV revealed the presence of several anti-oxidant, anti-apoptotic, and hepatoprotective compounds. In isoniazid-induced HepG2 cells, LVV reduced cytotoxicity of isoniazid and shifted its IC50 value. Treatment with LVV reduced ROS generation and lipid peroxidation; enhanced GSH enzyme levels in isoniazid-induced HepG2 cells. As per the mechanistic evaluation, LVV modulated gene expression level of Caspase-3, FGF21, and IRE-1α. LVV treatment also normalized isoniazid-induced elevated Caspase-3 activity and cPARP1 protein levels, indicating its potentials to regulate liver cell apoptosis. Concomitantly, biomarkers of hepatotoxicity, ALT and GGT, also decreased by LVV treatment. Interestingly, LVV treatment reduced intracellular accumulation of isoniazid and its toxic metabolite hydrazine, in isoniazid-stimulated HepG2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。