Integrated comparative transcriptome and physiological analysis reveals the metabolic responses underlying genotype variations in NH4+ tolerance

综合比较转录组和生理分析揭示了 NH4+ 耐受性基因型变异背后的代谢反应

阅读:8
作者:Haifei Chen, Wei Lv, Wenqi Zhang, Jie Zhao, Quan Zhang, Zhenhua Zhang

Abstract

Several mechanisms have been proposed to explain NH4 + toxicity. However, the core information about the biochemical regulation of plants in response to NH4 + toxicity is still lacking. In this study, the tissue NH4 + concentration is an important factor contributing to variations in plant growth even under nitrate nutrition and NH4 + tolerance under ammonium nutrition. Furthermore, NH4 + led to the reprogramming of the transcriptional profile, as genes related to trehalose-6-phosphate and zeatin biosynthesis were downregulated, whereas genes related to nitrogen metabolism, camalexin, stilbenoid and phenylpropanoid biosynthesis were upregulated. Further analysis revealed that a large number of genes, which enriched in phenylpropanoid and stilbenoid biosynthesis, were uniquely upregulated in the NH4 +- tolerant ecotype Or-1. These results suggested that the NH4 +-tolerant ecotype showed a more intense response to NH4 + by activating defense processes and pathways. Importantly, the tolerant ecotype had a higher 15NH4 + uptake and nitrogen utilization efficiency, but lower NH4 +, indicating the tolerant ecotype maintained a low NH4 + level, mainly by promoting NH4 + assimilation rather than inhibiting NH4 + uptake. The carbon and nitrogen metabolism analysis revealed that the tolerant ecotype had a stronger carbon skeleton production capacity with higher levels of hexokinase, pyruvate kinase, and glutamate dehydrogenase activity to assimilate free NH4 +, Taken together, the results revealed the core mechanisms utilized by plants in response to NH4 +, which are consequently of ecological and agricultural importance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。