Metal leakage from orthodontic appliances chemically alters enamel surface during experimental in vitro simulated treatment

在实验性体外模拟治疗过程中,正畸器具的金属泄漏会对牙釉质表面产生化学改变

阅读:16
作者:Justyna M Topolska, Agata Jagielska, Sylwia Motyl, Gabriela A Kozub-Budzyń, Luiza Kępa, Barbara Wagner, Katarzyna Wątor

Abstract

Human enamel is composed mainly of apatite. This mineral of sorption properties is susceptible to chemical changes, which in turn affect its resistance to dissolution. This study aimed to investigate whether metal leakage from orthodontic appliances chemically alters the enamel surface during an in vitro simulated orthodontic treatment. Totally 107 human enamel samples were subjected to the simulation involving metal appliances and cyclic pH fluctuations over a period of 12 months in four complimentary experiments. The average concentrations and distribution of Fe, Cr, Ni, Ti and Cu within the enamel before and after the experiments were examined using ICP‒MS and LA‒ICP‒MS techniques. The samples exposed to the interaction with metal appliances exhibited a significant increase in average Fe, Cr and Ni (Kruskal-Wallis, p < 0.002) content in comparison to the control group. The outer layer, narrow fissures and points of contact with the metal components showed increased concentrations of Fe, Ti, Ni and Cr after simulated treatment, conversely to the enamel sealed with an adhesive system. It has been concluded that metal leakage from orthodontic appliances chemically alters enamel surface and microlesions during experimental in vitro simulated treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。