Removal of immunoglobulin-like domains from titin's spring segment alters titin splicing in mouse skeletal muscle and causes myopathy

从肌联蛋白的弹簧节中去除免疫球蛋白样结构域会改变小鼠骨骼肌中的肌联蛋白剪接并导致肌病

阅读:7
作者:Danielle Buck, John E Smith 3rd, Charles S Chung, Yasuko Ono, Hiroyuki Sorimachi, Siegfried Labeit, Henk L Granzier

Abstract

Titin is a molecular spring that determines the passive stiffness of muscle cells. Changes in titin's stiffness occur in various myopathies, but whether these are a cause or an effect of the disease is unknown. We studied a novel mouse model in which titin's stiffness was slightly increased by deleting nine immunoglobulin (Ig)-like domains from titin's constitutively expressed proximal tandem Ig segment (IG KO). KO mice displayed mild kyphosis, a phenotype commonly associated with skeletal muscle myopathy. Slow muscles were atrophic with alterations in myosin isoform expression; functional studies in soleus muscle revealed a reduced specific twitch force. Exon expression analysis showed that KO mice underwent additional changes in titin splicing to yield smaller than expected titin isoforms that were much stiffer than expected. Additionally, splicing occurred in the PEVK region of titin, a finding confirmed at the protein level. The titin-binding protein Ankrd1 was highly increased in the IG KO, but this did not play a role in generating small titin isoforms because titin expression was unaltered in IG KO mice crossed with Ankrd1-deficient mice. In contrast, the splicing factor RBM20 (RNA-binding motif 20) was also significantly increased in IG KO mice, and additional differential splicing was reversed in IG KO mice crossed with a mouse with reduced RBM20 activity. Thus, increasing titin's stiffness triggers pathological changes in skeletal muscle, with an important role played by RBM20.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。