High rate of multidrug resistance and integrons in Escherichia coli isolates from diseased ducks in select regions of China

中国部分地区病鸭大肠杆菌分离株多重耐药率及整合子率较高

阅读:7
作者:Shaqiu Zhang, Yanxi Shu, Yuwei Wang, Zhijun Zhong, Mingshu Wang, Renyong Jia, Shun Chen, Mafeng Liu, Dekang Zhu, Xinxin Zhao, Ying Wu, Qiao Yang, Juan Huang, Xumin Ou, Sai Mao, Qun Gao, Di Sun, Bin Tian, Anchun Cheng

Abstract

With the increasing number of ducks being raised and consumed, it is crucial to monitor the presence of multidrug resistant (MDR) bacteria in duck farming. Waterfowl, such as ducks, can contribute to the rapid dissemination of antibiotic resistance genes (ARGs). The objective of this study was to investigate the antimicrobial resistance (AMR), ARGs, and mobile genetic elements (MGEs), such as IS26, tbrC, ISEcp1 in Escherichia coli(E. coli) isolated from the intestinal contents of diseased ducks between 2021 and 2022 in Sichuan, Chongqing and Anhui, China. The AMR phenotypes of 201 isolated E. coli strains were determined using the minimum inhibitory concentrations (MICs) method. Subsequently, polymerase chain reaction and sequencing techniques were employed to screen for integron-integrase genes (intI1, intI2, intI3 genes), gene cassettes (GCs), MGEs, and ARGs. The results demonstrated that 96.5% of the E. coli isolates were resistant to at least 1 antibiotic, with 88.1% of the strains displaying MDR phenotype. The highest AMR phenotype observed was for trimethoprim-sulfamethoxazole (88.1%). Furthermore, class 1 and class 2 integrons were detected in 68.2% and 3.0% of all the isolates, respectively, whereas no class 3 integrons were found. Ten types of GCs were identified in the variable regions of class 1 and class 2 integrons. Moreover, 10 MGEs were observed in 46 combinations, with IS26 exhibiting the highest detection rate (89.6%). Among the 22 types of ARGs, tetA (77.1%) was the most frequently detected. In the conjugational transfer experiment, transconjugants were found to carry specific ARGs and MGEs, with their MIC values were significantly higher than those of recipient E. coli J53, indicating their status as MDR bacteria. This study emphasizes the necessity of monitoring MGEs, ARGs, and integrons in duck farms. It provides valuable insights into the complex formation mechanisms of AMR and may aid in preventing and controlling the spread of MDR bacteria in waterfowl breeding farm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。