Sublethal toxicant effects with dynamic energy budget theory: application to mussel outplants

亚致死毒物效应与动态能量预算理论:应用于贻贝外植体

阅读:8
作者:Erik B Muller, Craig W Osenberg, Russell J Schmitt, Sally J Holbrook, Roger M Nisbet

Abstract

We investigate the effectiveness of a sublethal toxic effect model embedded in Dynamic Energy Budget (DEB) theory for the analysis of field data. We analyze the performance of two species of mussels, Mytilus galloprovincialis and M. californianus, near a diffuser discharging produced water in the Southern California Bight, California. Produced water is a byproduct of oil production consisting of fossil water together with compounds added during the extraction process, and generally contains highly elevated levels of pollutants relative to sea water. Produced water negatively affects the production of somatic and reproductive biomass in both mussel species; we show that these negative effects can be quantified with our DEB-based modeling framework through the estimation of toxic effect scaling parameters. Our analyses reveal that the toxic impact of produced water on growth and reproduction of M. californianus is substantially higher than for M. galloprovincialis. Projections of the expected lifetime production of gonad biomass indicate that the environmental impact of produced water can be as large as 100%, whereas short-term assessment without the use of DEB theory projects a maximum effect of only 30%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。