Influences of Extrusion and Silver Content on the Degradation of Mg-Ag Alloys In Vitro and In Vivo

挤压和银含量对镁银合金体内外降解的影响

阅读:7
作者:Guanqi Liu, Jianmin Han, Xiaodong Yu, Shenpo Yuan, Zhihua Nie, Tiancheng Qiu, Ziyu Yan, Chengwen Tan, Chuanbin Guo

Abstract

Binary magnesium-silver (Mg-Ag) alloys were designed as antibacterial materials for biomedical implant applications. In the present study, we focused on the effects of extrusion (extrusion ratio (ER): 1, 7.1, and 72.2) and Ag content (Ag = 0, 3, and 6 wt.%) on the degradation of Mg-Ag alloys in vitro and in vivo via microstructure characterization and corrosion/degradation measurements. The results showed that the Ag promoted a galvanic reaction with the Mg matrix to accelerate degradation or formed a protective oxide mesh texture to inhibit degradation, especially in vivo. Ag might also be beneficial for product crystallization, biomineralization, and organic matter deposition. For pure Mg, extrusion produced a more refined grain and decreased the degradation rate. For the Mg-Ag alloys, a low extrusion ratio (7.1) accelerated the degradation caused by the increase in the proportion of the precipitate. This promoted the release of Mg2+ and Ag+, which led to more deposition of organic matter and calcium phosphate, but also more H2 bubbles, which led to disturbance of product deposition in some local positions or even inflammatory reactions. Extrusion at a higher ratio (72.2) dissolved the precipitates. This resulted in moderate degradation rates and less gas production, which promoted osteogenesis without an obvious inflammation reaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。