Dexmedetomidine Protects Against Oxygen-Glucose Deprivation-Induced Injury Through Inducing Astrocytes Autophagy via TSC2/mTOR Pathway

右美托咪啶通过 TSC2/mTOR 通路诱导星形胶质细胞自噬,防止氧葡萄糖缺乏引起的损伤

阅读:11
作者:Chen Zhu, Quan Zhou, Cong Luo, Ying Chen

Abstract

Although there is an increment in stroke burden in the world, stroke therapeutic strategies are still extremely limited to a minority of patients. We previously demonstrated that dexmedetomidine (DEX) protects against focal cerebral ischemia via inhibiting neurons autophagy. Nevertheless, the role of DEX in regulating astrocytes autophagic status in oxygen-glucose deprivation, a condition that mimics cerebral ischemia, is still unknown. In this study, we have shown that DEX and DEX + RAPA (autophagy inducer) increased viability and reduced apoptosis of primary astrocytes in oxygen-glucose deprivation (OGD) model compared with DEX + 3-methyladenine (3-MA) (autophagy inhibitor). DEX induced the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1, while reduced the expression of p62 in primary cultured astrocytes through induction of autophagy. In addition, DEX enhanced the expression of tuberous sclerosis complex 2 (TSC2) in primary cultured astrocytes, while reduced the expression of mammalian target of rapamycin (mTOR). In conclusion, our study suggests that DEX exerts a neuroprotection against OGD-induced astrocytes injury via activation of astrocytes autophagy by regulating the TSC2/mTOR signaling pathway, which provides a new insight into the mechanisms of DEX treatment for acute ischemic injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。