Rhizosheath-root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment

根鞘根系统改变了沙漠环境中不同季节的胞外多糖含量,但稳定了细菌群落

阅读:7
作者:Ramona Marasco, Marco Fusi, Maria Mosqueira, Jenny Marie Booth, Federico Rossi, Massimiliano Cardinale, Grégoire Michoud, Eleonora Rolli, Gianmarco Mugnai, Lorenzo Vergani, Sara Borin, Roberto De Philippis, Ameur Cherif, Daniele Daffonchio0

Background

In hot deserts daily/seasonal fluctuations pose great challenges to the resident organisms. However, these extreme ecosystems host unique microenvironments, such as the rhizosheath-root system of desert speargrasses in which biological activities and interactions are facilitated by milder conditions and reduced fluctuations. Here, we examined the bacterial microbiota associated with this structure and its surrounding sand in the desert speargrass Stipagrostis pungens under the contrasting environmental conditions of summer and winter in the Sahara Desert.

Conclusions

Our results reveal the capability of plants in desert ecosystems to stabilize their below ground microbial community under seasonal contrasting environmental conditions, minimizing the heterogeneity of the surrounding bulk sand and contributing to the overall holobiont resilience under poly-extreme conditions.

Results

The belowground rhizosheath-root system has higher nutrient and humidity contents, and cooler temperatures than the surrounding sand. The plant responds to the harsh environmental conditions of the summer by increasing the abundance and diversity of extracellular polymeric substances (EPS) compared to the winter. On the contrary, the bacterial community associated with the rhizosheath-root system and its interactome remain stable and, unlike the bulk sand, are unaffected by the seasonal environmental variations. The rhizosheath-root system bacterial communities are consistently dominated by Actinobacteria and Alphaproteobacteria and form distinct bacteria communities from those of bulk sand in the two seasons. The microbiome-stabilization mediated by the plant host acts to consistently retain beneficial bacteria with multiple plant growth promoting functions, including those capable to produce EPS, which increase the sand water holding capacity ameliorating the rhizosheath micro-environment. Conclusions: Our results reveal the capability of plants in desert ecosystems to stabilize their below ground microbial community under seasonal contrasting environmental conditions, minimizing the heterogeneity of the surrounding bulk sand and contributing to the overall holobiont resilience under poly-extreme conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。