Region-specific activation in the accumbens nucleus by itch with modified scratch efficacy in mice - a model-free multivariate analysis

小鼠伏隔核中瘙痒区域特异性激活与改良抓挠效应 - 无模型多元分析

阅读:5
作者:Sanae Inokuchi-Sakata, Ryo Narita, Yukari Takahashi, Yozo Ishiuji, Akihiko Asahina, Fusao Kato

Abstract

Itch is a protective/defensive function with divalent motivational drives. Itch itself elicits an unpleasant experience, which triggers the urge to scratch, relieving the itchiness. Still, it can also result in dissatisfaction when the scratch is too intense and painful or unsatisfactory due to insufficient scratch effect. Therefore, it is likely that the balance between the unpleasantness/pleasure and satisfaction/unsatisfaction associated with itch sensation and scratching behavior is determined by complex brain mechanisms. The physiological/pathological mechanisms underlying this balance remain largely elusive. To address this issue, we targeted the "reward center" of the brain, the nucleus accumbens (NAc), in which itch-responsive neurons have been found in rodents. We examined how neurons in the NAc are activated or suppressed during histamine-induced scratching behaviors in mice. The mice received an intradermal injection of histamine or saline at the neck, and the scratching number was analyzed by recording the movement of the bilateral hind limbs for about 45 min after injection. To experimentally manipulate the scratch efficacy in these histamine models, we compared histamine's behavioral and neuronal effects between mice with intact and clipped nails on the hind paws. As expected, the clipping of the hind limb nail increased the number of scratches after the histamine injection. In the brains of mice exhibiting scratching behaviors, we analyzed the expression of the c-fos gene (Fos) as a readout of an immediate activation of neurons during itch/scratch and dopamine receptors (Drd1 and Drd2) using multiplex single-molecule fluorescence in situ hybridization (RNAscope) in the NAc and surrounding structures. We performed a model-free analysis of gene expression in geometrically divided NAc subregions without assuming the conventional core-shell divisions. The results indicated that even within the NAc, multiple subregions responded differentially to various itch/scratch conditions. We also found different clusters with neurons showing similar or opposite changes in Fos expression and the correlation between scratch number and Fos expression in different itch/scratch conditions. These regional differences and clusters would provide a basis for the complex role of the NAc and surrounding structures in encoding the outcomes of scratching behavior and itchy sensations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。