Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes

拟南芥基因组杂交中转座因子衍生序列的差异保留

阅读:9
作者:Sylvain Legrand, Thibault Caron, Florian Maumus, Sol Schvartzman, Leandro Quadrana, Eléonore Durand, Sophie Gallina, Maxime Pauwels, Clément Mazoyer, Lucie Huyghe, Vincent Colot, Marc Hanikenne, Vincent Castric

Background

Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri.

Conclusion

Our results indicate a rapid evolutionary dynamics of the TE landscape in these two outcrossing species, with an important input of a diverse set of new insertions with variable propensity to resist deletion.

Results

Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either 'recent' or 'old' insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics of TE accumulation in the two species. Orthologous TE fragments (i.e. those that have been maintained in both species), tend to be located closer to genes than those that are retained in one species only. Compared to non-orthologous TE insertions, those that are orthologous tend to produce fewer short interfering RNAs, are less heavily methylated when found within or adjacent to genes and these tend to have lower expression levels. These findings suggest that long-term retention of TE insertions reflects their frequent acquisition of adaptive roles and/or the deleterious effects of removing nearly neutral TE insertions when they are close to genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。