Chlamydophila pneumoniae enhances secretion of VEGF, TGF-beta and TIMP-1 from human bronchial epithelial cells under Th2 dominant microenvironment

肺炎衣原体在 Th2 优势微环境下增强人支气管上皮细胞 VEGF、TGF-β 和 TIMP-1 的分泌

阅读:5
作者:Chan-Sun Park, Tae-Bum Kim, Keun Ae Moon, Yun-Jeong Bae, Hee Ran Lee, Min Kyoung Jang, Hee-Bom Moon, You Sook Cho

Conclusions

These results suggest that C. pneumoniae plays a role in the pathogenesis of airway remodeling in asthma, revealing a Th2-dominant immune response. Further studies are required to clarify the precise mechanism of C. pneumoniae infection in airway remodeling.

Methods

Human bronchial epithelial cells (BEAS-2B cells) were infected with C. pneumoniae strain TW183 and cultured in both a Th1-dominant microenvironment with INF-gamma and a Th2-dominant microenvironment with IL-4 or IL-13 added to the culture medium. The VEGF, TGF-beta, and TIMP-1 levels in the culture supernatants were measured using enzyme-linked immunosorbent assays (ELISA). The activation of NF-kappaB in each experimental condition was determined using an electrophoretic mobility shift assay.

Purpose

Chlamydophila pneumoniae infection in the airways is thought to be associated with the pathogenesis of asthma, especially in non-atopic severe asthma with irreversible airway obstruction that may be related to airway remodeling. Here, we investigated whether C. pneumoniae infection enhances the secretion of critical chemical mediators for airway remodeling, such as VEGF, TGF-beta, and TIMP-1, in human bronchial epithelial cells (BECs) in a Th2-dominant microenvironment.

Results

Chlamydophila pneumoniae-infected BECs showed enhanced secretion of VEGF, TGF-beta, and TIMP-1 compared with non-infected BECs. The levels of cytokines secreted from BECs were increased more when IL-13 was added to the culture medium. C. pneumoniae-infected BECs also showed increased NF-kappaB activation. Conclusions: These results suggest that C. pneumoniae plays a role in the pathogenesis of airway remodeling in asthma, revealing a Th2-dominant immune response. Further studies are required to clarify the precise mechanism of C. pneumoniae infection in airway remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。