Intercellular Adhesion Molecule 1 Functions as an Efferocytosis Receptor in Inflammatory Macrophages

细胞间粘附分子 1 在炎症巨噬细胞中起胞吐作用受体的作用

阅读:4
作者:Hannah L Wiesolek, Triet M Bui, Joseph J Lee, Prarthana Dalal, Ariel Finkielsztein, Ayush Batra, Edward B Thorp, Ronen Sumagin

Abstract

Intercellular adhesion molecule-1 (ICAM-1) is up-regulated during inflammation by several cell types. ICAM-1 is best known for its role in mediating leukocyte adhesion to endothelial cells and guiding leukocytes across the vascular wall. Recently, macrophages have been shown to express ICAM-1, however, their role in macrophage function is unclear. We found that ICAM-1 expression was induced during inflammatory macrophage polarization and high numbers of ICAM-1-expressing macrophages were noted in inflamed colon tissue in a murine colitis model and in human inflammatory bowel disease. Because tissue macrophages play a critical role in removing apoptotic/necrotic cells in inflammation and injury, a process termed efferocytosis, it was examined whether ICAM-1 contributes to this process. Genetic deletion (ICAM-1 knockout mice) or siRNA-mediated knockdown of ICAM-1 in isolated murine and human macrophages significantly impaired apoptotic cell (AC) engulfment. Impairment in the engulfment of Jurkat T cells, neutrophils, and epithelial cells was confirmed ex vivo by inflammatory macrophages and in vivo by thioglycolate-recruited peritoneal macrophages. Decreased efferocytosis was also seen in vitro and in vivo with inhibition of ICAM-1 adhesive interactions, using a function blocking anti-ICAM-1 antibody. Mechanistically, it was found that ICAM-1 actively redistributes to cluster around engulfed ACs to facilitate macrophage-AC binding. Our findings define a new role for ICAM-1 in promoting macrophage efferocytosis, a critical process in the resolution of inflammation and restoration of tissue homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。