Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process

小麦籽粒发育过程中蛋白质和代谢物的空间分布及其在籽粒灌浆过程中的差异调控反应

阅读:10
作者:Shuang Zhang, Arindam Ghatak, Mitra Mohammadi Bazargani, Prasad Bajaj, Rajeev K Varshney, Palak Chaturvedi, Dong Jiang, Wolfram Weckwerth

Abstract

Grain filling and grain development are essential biological processes in the plant's life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。