Altered APP processing in insulin-resistant conditions is mediated by autophagosome accumulation via the inhibition of mammalian target of rapamycin pathway

胰岛素抵抗条件下 APP 加工的改变是由自噬体积累通过抑制哺乳动物雷帕霉素靶蛋白通路介导的

阅读:5
作者:Sung Min Son, Hyundong Song, Jayoung Byun, Kyong Soo Park, Hak Chul Jang, Young Joo Park, Inhee Mook-Jung

Abstract

Insulin resistance, one of the major components of type 2 diabetes mellitus (T2DM), is a known risk factor for Alzheimer's disease (AD), which is characterized by an abnormal accumulation of intra- and extracellular amyloid β peptide (Aβ). Insulin resistance is known to increase Aβ generation, but the underlying mechanism that links insulin resistance to increased Aβ generation is unknown. In this study, we examined the effect of high-fat diet-induced insulin resistance on amyloid precursor protein (APP) processing in mouse brains. We found that the induced insulin resistance promoted Aβ generation in the brain via altered insulin signal transduction, increased β- and γ-secretase activities, and accumulation of autophagosomes. These findings were confirmed in diabetic db/db mice brains. Furthermore, in vitro experiments in insulin-resistant SH-SY5Y cells and primary cortical neurons confirmed the alteration of APP processing by insulin resistance-induced autophagosome accumulation. Defects in insulin signal transduction affect autophagic flux by inhibiting the mammalian target of rapamycin pathway, resulting in altered APP processing in these cell culture systems. Thus, the insulin resistance that underlies the pathogenesis of T2DM might also trigger accumulation of autophagosomes, leading to increased Aβ generation, which might be involved in the pathogenesis of AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。