Copper-induced translocation of the Wilson disease protein ATP7B independent of Murr1/COMMD1 and Rab7

铜诱导的威尔逊病蛋白 ATP7B 易位,不依赖于 Murr1/COMMD1 和 Rab7

阅读:6
作者:Karl Heinz Weiss, Javier Carbajo Lozoya, Sabine Tuma, Daniel Gotthardt, Jürgen Reichert, Robert Ehehalt, Wolfgang Stremmel, Joachim Füllekrug

Abstract

Wilson disease is a genetic disorder of copper metabolism. Impaired biliary excretion results in a gradual accumulation of copper, which leads to severe disease. The specific gene defect lies in the Wilson disease protein, ATP7B, a copper-transporting ATPase that is highly active in hepatocytes. The two major functions of ATP7B in the liver are the copper loading of ceruloplasmin in the Golgi apparatus, and the excretion of excess copper into the bile. In response to elevated copper levels, ATP7B shows a unique intracellular trafficking pattern that is required for copper excretion from the Golgi apparatus into dispersed vesicles. We analyzed the translocation of ATP7B by both confocal microscopy and RNA interference, testing current models that suggest the involvement of Murr1/COMMD1 and Rab7 in this pathway. We found that although the ATP7B translocation is conserved among nonhepatic cell lines, there is no co-localization with Murr1/COMMD1 or the Rab marker proteins of the endolysosomal system. Consistent with this finding, the translocation of ATP7B was not impaired by the depletion of either Murr1/COMMD1 or Rab7, or by a dominant-negative Rab7 mutant. In conclusion, our data suggest that the translocation of ATP7B takes place independently of Rab7-regulated endosomal traffic events. Murr1/COMMD1 plays a role in a later step of the copper excretion pathway but is not involved in the translocation of the Wilson disease protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。