Inhibiting Methanogenesis Stimulated de novo Synthesis of Microbial Amino Acids in Mixed Rumen Batch Cultures Growing on Starch but Not on Cellulose

抑制甲烷生成刺激了以淀粉而非纤维素为生的混合瘤胃批量培养物中微生物氨基酸的从头合成

阅读:9
作者:Emilio M Ungerfeld, M Fernanda Aedo, Camila Muñoz, Natalie L Urrutia, Emilio D Martínez, Marcelo Saldivia

Abstract

Ameliorating methane (CH4) emissions from ruminants would have environmental benefits, but it is necessary to redirect metabolic hydrogen ([H]) toward useful sinks to also benefit animal productivity. We hypothesized that inhibiting rumen methanogenesis would increase de novo synthesis of microbial amino acids (AA) as an alternative [H] sink if sufficient energy and carbon are provided. We examined the effects of inhibiting methanogenesis with 9, 10-anthraquione (AQ) on mixed rumen batch cultures growing on cellulose or starch as sources of energy and carbon contrasting in fermentability, with ammonium (NH4+) or trypticase (Try) as nitrogen (N) sources. Inhibiting methanogenesis with AQ inhibited digestion with cellulose but not with starch, and decreased propionate and increased butyrate molar percentages with both substrates. Inhibiting methanogenesis with 9, 10-anthraquinone increased de novo synthesis of microbial AA with starch but not with cellulose. The decrease in the recovery of [H] caused by the inhibition of methanogenesis was more moderate with starch due to an enhancement of butyrate and AA as [H] sinks. There may be an opportunity to simultaneously decrease the emissions of CH4 and N with some ruminant diets and replace plant protein supplements with less expensive non-protein nitrogen sources such as urea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。