Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen

LARP6 与保守的 5’ 茎环结合调节编码 I 型胶原蛋白的 mRNA 的翻译

阅读:6
作者:Le Cai, Dillon Fritz, Lela Stefanovic, Branko Stefanovic

Abstract

Type I collagen is the most abundant protein in the human body, produced by folding of two alpha1(I) polypeptides and one alpha2(I) polypeptide into the triple helix. A conserved stem-loop structure is found in the 5' untranslated region of collagen mRNAs, encompassing the translation start codon. We cloned La ribonucleoprotein domain family member 6 (LARP6) as the protein that binds the collagen 5' stem-loop in a sequence-specific manner. LARP6 has a distinctive bipartite RNA binding domain not found in other members of the La superfamily. LARP6 interacts with the two single-stranded regions of the 5' stem-loop. The K(d) for binding of LARP6 to the 5' stem-loop is 1.4 nM. LARP6 binds the 5' stem-loop in both the nucleus and the cytoplasm. In the cytoplasm, LARP6 does not associate with polysomes; however, overexpression of LARP6 blocks ribosomal loading on collagen mRNAs. Knocking down LARP6 by small interfering RNA also decreased polysomal loading of collagen mRNAs, suggesting that it regulates translation. Collagen protein is synthesized at discrete regions of the endoplasmic reticulum. Using collagen-GFP (green fluorescent protein) reporter protein, we could reproduce this focal pattern of synthesis, but only when the reporter was encoded by mRNA with the 5' stem-loop and in the presence of LARP6. When the reporter was encoded by mRNA without the 5' stem-loop, or in the absence of LARP6, it accumulated diffusely throughout the endoplasmic reticulum. This indicates that LARP6 activity is needed for focal synthesis of collagen polypeptides. We postulate that the LARP6-dependent mechanism increases local concentration of collagen polypeptides for more efficient folding of the collagen heterotrimer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。