Identification of Flo11-like Adhesin in Schizosaccharomyces pombe and the Mechanism of Small-Molecule Compounds Mediating Biofilm Formation in Yeasts

裂殖酵母中Flo11样粘附素的鉴定及小分子化合物介导酵母生物膜形成的机制

阅读:5
作者:Yu-Gang Zhang, Tong Zhang, Lan Lin

Abstract

Fungal infection is initiated by the adhesion of pathogens to biotic and abiotic surfaces, with various manifestations including biofilm formation and invasive growth, etc. A previous report, though devoid of functional data, speculated that the Schizosaccharomyces pombe glycoprotein SPBPJ4664.02 could be the homology of Saccharomyces cerevisiae Flo11. Here, our studies with S. pombe substantiated the previously proposed speculation by (1) the deletion of SPBPJ4664.02 attenuated biofilm formation and invasive growth in S. pombe; (2) the S. pombe's lack of SPBPJ4664.02 could be complemented by expressing S. cerevisiae flo11. Furthermore, indole-3-acetic acid (IAA) and dodecanol were examined in S. pombe for their respective effects on biofilm formation. IAA and dodecanol at high concentrations could inhibit biofilm formation, whereas opposing effects were observed with low concentrations of these molecules. Mechanism studies with the SPBPJ4664.02Δ and SPBPJ4664.02Δ/flo11OE versus the wild type have demonstrated that IAA or dodecanol might exert regulatory effects downstream of SPBPJ4664.02 in the signaling pathway for biofilm formation. Moreover, our research extrapolated to Candida albicans has pinpointed that IAA inhibited biofilm formation at high concentrations, consistent with the transcriptional downregulation of the biofilm-related genes. Dodecanol suppressed C. albicans biofilm formation at all the concentrations tested, in accord with the downregulation of biofilm-related transcripts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。