Pathways of Metabolite-Related Damage to a Synthetic p53 Gene Exon 7 Oligonucleotide Using Magnetic Enzyme Bioreactor Beads and LC-MS/MS Sequencing

使用磁性酶生物反应器珠和 LC-MS/MS 测序研究合成 p53 基因外显子 7 寡核苷酸代谢物相关损伤途径

阅读:5
作者:Spundana Malla, Karteek Kadimisetty, Di Jiang, Dharamainder Choudhary, James F Rusling

Abstract

Reactive metabolites of environmental chemicals and drugs can cause site specific damage to the p53 tumor suppressor gene in a major pathway for genotoxicity. We report here a high-throughput, cell-free, 96-well plate magnetic bead-enzyme system interfaced with LC-MS/MS sequencing for bioactivating test chemicals and identifying resulting adduction sites on genes. Bioactivated aflatoxin B1 was reacted with a 32 bp exon 7 fragment of the p53 gene using eight microsomal cytochrome (cyt) P450 enzymes from different organs coated on magnetic beads. All cyt P450s converted aflatoxin B1 to aflatoxin B1-8,9-epoxide that adducts guanine (G) in codon 249, with subsequent depurination to give abasic sites and then strand breaks. This is the first demonstration in a cell-free medium that the aflatoxin B1 metabolite selectively causes abasic site formation and strand breaks at codon 249 of the p53 probe, corresponding to the chemical pathway and mutations of p53 in human liver cells and tumors. Molecular modeling supports the view that binding of aflatoxin B1-8,9-epoxide to G in codon 249 precedes the SN2 adduction reaction. Among a range of metabolic enzymes characteristic of different organs, human liver microsomes and cyt P450 3A5 supersomes showed the highest bioactivation rate for p53 exon 7 damage. This method of identifying metabolite-related gene damage sites may facilitate predictions of organ specific cancers for test chemicals via correlations with mutation sites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。