Pharmacological inhibition of store-operated calcium entry in MDA-MB-468 basal A breast cancer cells: consequences on calcium signalling, cell migration and proliferation

药理学抑制 MDA-MB-468 基底 A 乳腺癌细胞中的钙池操纵钙内流:对钙信号传导、细胞迁移和增殖的影响

阅读:8
作者:Iman Azimi, Alice H Bong, Greta X H Poo, Kaela Armitage, Dawn Lok, Sarah J Roberts-Thomson, Gregory R Monteith

Abstract

Store-operated Ca2+ entry is a pathway that is remodelled in a variety of cancers, and altered expression of the components of store-operated Ca2+ entry is a feature of breast cancer cells of the basal molecular subtype. Studies of store-operated Ca2+ entry in breast cancer cells have used non-specific pharmacological inhibitors, complete depletion of intracellular Ca2+ stores and have mostly focused on MDA-MB-231 cells (a basal B breast cancer cell line). These studies compared the effects of the selective store-operated Ca2+ entry inhibitors Synta66 and YM58483 (also known as BTP2) on global cytosolic free Ca2+ ([Ca2+]CYT) changes induced by physiological stimuli in a different breast cancer basal cell line model, MDA-MB-468. The effects of these agents on proliferation as well as serum and epidermal growth factor (EGF) induced migration were also assessed. Activation with the purinergic receptor activator adenosine triphosphate, produced a sustained increase in [Ca2+]CYT that was entirely dependent on store-operated Ca2+ entry. The protease activated receptor 2 activator, trypsin, and EGF also produced Ca2+ influx that was sensitive to both Synta66 and YM58483. Serum-activated migration of MDA-MB-468 breast cancer cells was sensitive to both store-operated Ca2+ inhibitors. However, proliferation and EGF-activated migration was differentially affected by Synta66 and YM58483. These studies highlight the need to define the exact mechanisms of action of different store-operated calcium entry inhibitors and the impact of such differences in the control of tumour progression pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。