Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis

3D 打印临时牙冠和固定牙科假体树脂与 CAD/CAM 铣削和传统临时树脂的物理和机械性能比较:系统评价和荟萃分析

阅读:7
作者:Saurabh Jain, Mohammed E Sayed, Mallika Shetty, Saeed M Alqahtani, Mohammed Hussain Dafer Al Wadei, Shilpi Gilra Gupta, Ahlam Abdulsalam Ahmed Othman, Abdulkarim Hussain Alshehri, Hatem Alqarni, Abdulaziz Hussain Mobarki, Khalid Motlaq, Haifa F Bakmani, Asma A Zain, Abdullah J Hakami, Moayad F Sheay

Abstract

Newly introduced provisional crowns and fixed dental prostheses (FDP) materials should exhibit good physical and mechanical properties necessary to serve the purpose of their fabrication. The aim of this systematic literature review and meta-analysis is to evaluate the articles comparing the physical and mechanical properties of 3D-printed provisional crown and FDP resin materials with CAD/CAM (Computer-Aided Designing/Computer-Aided Manufacturing) milled and conventional provisional resins. Indexed English literature up to April 2022 was systematically searched for articles using the following electronic databases: MEDLINE-PubMed, Web of Science (core collection), Scopus, and the Cochrane library. This systematic review was structured based on the guidelines given by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The focused PICO/PECO (Participant, Intervention/exposure, Comparison, Outcome) question was: 'Do 3D-printed (P) provisional crowns and FDPs (I) have similar physical and mechanical properties (O) when compared to CAD/CAM milled and other conventionally fabricated ones (C)'. Out of eight hundred and ninety-six titles, which were recognized after a primary search, twenty-five articles were included in the qualitative analysis, and their quality analysis was performed using the modified CONSORT scale. Due to the heterogeneity of the studies, only twelve articles were included for quantitative analysis. Within the limitations of this study, it can be concluded that 3D-printed provisional crown and FDP resin materials have superior mechanical properties but inferior physical properties compared to CAD/CAM milled and other conventionally fabricated ones. Three-dimensionally printed provisional crowns and FDP materials can be used as an alternative to conventional and CAD/CAM milled long-term provisional materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。