Phosphorylation-dependent mitochondrial translocation of MAP4 is an early step in hypoxia-induced apoptosis in cardiomyocytes

MAP4 的磷酸化依赖性线粒体易位是缺氧诱导心肌细胞凋亡的早期步骤

阅读:5
作者:J Hu, Z Chu, J Han, Q Zhang, D Zhang, Y Dang, J Ren, H C Chan, J Zhang, Y Huang

Abstract

Hypoxic or ischemic apoptosis is often tightly associated with the opening of mitochondrial permeability transition pore (mPTP); however, the molecular mechanisms regulating mPTP and thus mitochondrial-dependent apoptosis remain elusive. Emerging evidence indicates that the movement of key proteins in or out of mitochondria play a critical regulatory role in apoptosis. Here, we reported that, unexpectedly, the microtubule-associated protein 4 (MAP4) translocated from cytosol to mitochondria upon phosphorylation after hypoxia treatment in neonatal cardiomyocytes. When targeted to mitochondria, MAP4 was found to lead to mPTP opening and induce apoptosis. Mitochondrial accumulation and pro-apoptotic function of MAP4 could be reversed through the genetic inhibition of MAP4 phosphorylation. The MAP4(Ala) mutant, which mimicked the dephosphorylated form, suppressed mitochondrial translocation and apoptosis. Our data reveal a novel role of MAP4 in cardiac apoptosis and suggest a potential therapeutic strategy targeting mitochondrial translocation of MAP4 against apoptotic heart diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。