An Ultra-Fast Green UHPLC-MS/MS Method for Assessing the In Vitro Metabolic Stability of Dovitinib: In Silico Study for Absorption, Distribution, Metabolism, Excretion, Metabolic Lability, and DEREK Alerts

一种用于评估多韦替尼体外代谢稳定性的超快速绿色 UHPLC-MS/MS 方法:吸收、分布、代谢、排泄、代谢不稳定性及 DEREK 警报的计算机模拟研究

阅读:8
作者:Mohamed W Attwa, Ali S Abdelhameed, Adnan A Kadi

Conclusions

Via the usage of in silico software, it has been observed that making small changes to the structure of the aryl piperazine ring and quinolinone moieties, or replacing these groups in the drug design process, shows potential for enhancing the metabolic safety and stability of newly developed derivatives compared to DVB.

Methods

The target of the present study was to develop a rapid, green, accurate, and sensitive UHPLC-MS/MS method for measuring DVB levels in human liver microsomes (HLMs). The validations of the HLMs were performed via the established UHPLC-MS/MS approach, as stated in the US FDA reported guidelines for the standards of bioanalytical method validation protocol. The StarDrop in silico software package (version 6.6), which involves the DEREK and WhichP450 in silico modules, was used to check the DVB structure for hazardous alerts and metabolic instability. The DVB and encorafenib (EFB), internal standard, and chromatographic peaks were successfully separated using a reversed phase column (an Eclipse Plus Agilent C8 column) and an isocratic mobile phase. The production of DVB parent ions was accomplished by utilizing the positive ionization mode of an ESI source. The identification and measurement of DVB daughter ions were conducted using the MRM mode.

Results

The inter-day accuracy and precision exhibited a spectrum of values in the range of -0.56% to 9.33%, while the intra-day accuracy and precision showcased a range of scores between 0.28% and 7.28%. The DVB calibration curve showed a linear relationship that ranged from 1 to 3000 ng/mL. The usefulness of the currently validated UHPLC-MS/MS method was approved by the lower limit of quantification (LLOQ) of 1 ng/mL. The AGREE findings demonstrate that the UHPLC-MS/MS method had a noteworthy degree of ecological greenness. The in vitro half-life (t1/2) and intrinsic clearance (Clint) of DVB were calculated to be 15.48 min and 52.39 mL/min/kg, respectively, which aligned with the findings from the WhichP450 software (version 6.6). Conclusions: Via the usage of in silico software, it has been observed that making small changes to the structure of the aryl piperazine ring and quinolinone moieties, or replacing these groups in the drug design process, shows potential for enhancing the metabolic safety and stability of newly developed derivatives compared to DVB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。