Understanding virus retention mechanisms on protein a chromatography based on using different wash buffers - Evaluating the possibility for a generic wash buffer toolbox to improve virus clearance capacity

了解基于使用不同洗涤缓冲液的蛋白质色谱上的病毒保留机制 - 评估通用洗涤缓冲液工具箱提高病毒清除能力的可能性

阅读:8
作者:Sandra Krause, Florian Capito, Verena Oeinck, Hendrik Flato, Holger Hoffmann, Ozan Ötes, Annette Berg

Abstract

During manufacturing of mammalian-cell derived monoclonal antibodies (mAbs) virus clearance capacity of the downstream process has to be demonstrated. The protein A chromatography step typically achieves less than 4 log10 and is not considered as a major contributing step. Having been successfully applied to host cell protein removal before, we used different wash buffers for three mAbs with two model viruses (Minute virus of mice and Murine leukemia virus) in series as well as separately to further understand major contributing interactions for virus retention and potentially design a generic toolbox of stringent wash buffers to be applied to various mAbs. Results indicate a major relevance of hydrophobic interaction for Murine leukemia virus (xMuLV) and mAb A, based on improved clearance for buffers additionally containing increased levels of hydrophobic compounds. This effect was less pronounced for Minute virus of mice (MVM), whereby hydrogen-bonds were expected to play a stronger role for this model virus. Additionally, electrostatic interactions presumably are more relevant for MVM retention compared to xMuLV under the conditions evaluated. A generic mAb and virus-independent stringent wash buffer toolbox could not be identified. However, based on our results a customized mAb and virus wash buffer design with improved virus clearance is possible, with here demonstrated log reduction increase by 1.3 log10 for MVM and 2.2 log10 for xMuLV for the protein A step compared to equilibration buffer alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。