PUMA decreases the growth of prostate cancer PC-3 cells independent of p53

PUMA 不依赖 p53 抑制前列腺癌 PC-3 细胞的生长

阅读:4
作者:Zhengfei Shan, Qingzuo Liu, Yuling Li, Jitao Wu, Dekang Sun, Zhenli Gao

Abstract

PUMA (p53 upregulated modulator of apoptosis), a member of the B-cell lymphoma 2 (Bcl-2) protein family, is a pro-apoptotic protein. PUMA expression is modulated by the tumor suppressor p53. PUMA has a role in rapid cell death via p53-dependent and -independent mechanisms. To evaluate whether p53 is required for PUMA-mediated apoptosis in prostate cancer cells, p53 protein was silenced in human prostate cancer PC-3 cells by using p53 small interfering RNA (siRNA). The interference efficiency of p53 on RNA and protein levels was detected by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation and p21 expression were subsequently examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and western blot analysis, respectively. p53-silenced or control PC-3 cells were transfected with pCEP4-(hemagglutinin)-PUMA plasmid, or non-carrier plasmid. Enzyme-linked immunosorbent assay was used to determine cell apoptosis by measuring histone release and caspase-3 activation, and MTT assay was used to measure cell viability. In addition, the expression of pro-apoptosis protein Bax and anti-apoptosis protein Bcl-2 were evaluated. The results of the present study revealed that p53 siRNA significantly suppressed p53 RNA and protein expression in PC-3 cells. Deficiency of p53 increased the cell growth rate and decreased p21 expression. However, PUMA overexpression remained able to induce apoptosis in p53-silenced and control cells by increasing Bax expression and decreasing Bcl-2 expression, leading to the activation of caspase-3. These results suggest that PUMA may mediate apoptosis of prostate cancer PC-3 cells, potentially independently of p53. Furthermore, PUMA gene treatment to induce cancer cell apoptosis may be more efficient compared with p53-dependent apoptosis, where loss of p53 expression or function may lead to limited efficacy of PUMA expression. Therefore, the present study proposes the significant hypothesis that increasing PUMA expression may be an effective approach for the treatment of prostate cancer, regardless of p53 status.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。