The Effects of Pectin Structure on Emulsifying, Rheological, and In Vitro Digestion Properties of Emulsion

果胶结构对乳状液乳化性、流变性和体外消化特性的影响

阅读:3
作者:Xixiang Shuai, Jun Chen, Qi Liu, Haolan Dong, Taotao Dai, Zhaoying Li, Chengmei Liu, Risi Wang

Abstract

Pectin, a complex hydrocolloid, attracts extensive attention and application stemming from its good emulsification. However, the source of emulsification remains a conundrum. In this experiment, the structures of six kinds of commercial pectin, including LM 101 AS (101), LM 104 AS (104), 121 SLOW SET (121), YM 150 H (150), LM 13 CG (13CG), and β-PECTIN (β-P) were determined, and the effects of pectin structure on emulsion emulsification, rheology and in vitro digestibility were studied. The results showed that the β-P pectin contained a higher content of protein, ferulic acid, and acetyl and had a lower interfacial tension; this pectin-stabilized emulsion exhibited a smaller droplet size and superior centrifugal and storage stability. The results showed that β-P pectin had higher contents of protein, ferulic acid, and acetyl and lower interfacial tension than other pectins, and its stabilized emulsion exhibited smaller droplet size and superior centrifugation and storage stability. Furthermore, the emulsion formed by the pectin with high molecular weight and degree of methoxylation (DM) had a higher viscosity, which can inhibit the aggregation of emulsion droplets to some extent. However, the DM of pectin affected the charge and digestion behavior of pectin emulsion to a great extent. The smaller the DM, the more negative charge the emulsion carried, and the higher the release rate of free fatty acids. The results provided a basis for the rational selection and structural design of the pectin emulsifier.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。