Afterhyperpolarization potential modulated by local [K+]o in K+ diffusion-restricted extracellular space in the central clock of suprachiasmatic nucleus

视交叉上核中央时钟内 K+ 扩散受限细胞外空间局部 [K+]o 调节的超极化后电位

阅读:6
作者:Jyh-Jeen Yang, Rong-Chi Huang

Background

Intercellular coupling is essential for the suprachiasmatic nucleus (SCN) to serve as a coherent central clock. Synaptic release of neurotransmitters and neuropeptides is critical for synchronizing SCN neurons. However, intercellular coupling via non-synaptic mechanisms has also been demonstrated. In particular, the abundant perikaryal appositions with morphological specializations in the narrow extracellular space (ECS) may hinder molecular diffusion to allow for ion accumulation or depletion.

Conclusion

The result of peak AHP negative to calculated EK indicates that local [K+]o sensed by the TEA-sensitive AHP K+ channels must be lower than bulk [K+]o, most likely due to K+ clearance from K+ diffusion-restricted ECS by the Na+/K+-ATPase. The K+ diffusion-restricted ECS may allow for K+-mediated ionic interactions among neurons to regulate SCN excitability.

Methods

The SCN neurons were recorded in the whole-cell current-clamp mode, with pipette filled with high (26 mM)-Na+ or low (6 mM)-Na+ solution.

Results

Cells recorded with high-Na+ pipette solution could fire spontaneous action potentials (AP) with peak AHP more negative than the calculated value of K+ equilibrium potential (EK) and with peak AP more positive than calculated ENa. Cells recorded with low-Na+ pipette solution could also have peak AHP more negative than calculated EK. In contrast, the resting membrane potential (RMP) was always less negative to calculated EK. The distribution and the averaged amplitude of peak AHP, peak AP, or RMP was similar between cells recorded with high-Na+ and low-Na+ solution pipette. In a number of cells, the peak AHP could increase from more positive to become more negative than calculated EK spontaneously or after treatments to hyperpolarize the RMP. TTX blocked the Na+ -dependent APs and tetraethylammonium (TEA), but not Ba2+ or Cd2+, markedly reduced the peak AHP. Perforated-patch cells could also but rarely fire APs with peak AHP more negative than calculated EK.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。