The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae

谷胱甘肽降解的替代途径由酿酒酵母中涉及三个新基因的新型蛋白质复合物介导

阅读:8
作者:Dwaipayan Ganguli, Chitranshu Kumar, Anand Kumar Bachhawat

Abstract

Glutathione (GSH), L-gamma-glutamyl-L-cysteinyl-glycine, is the major low-molecular-weight thiol compound present in almost all eukaryotic cells. GSH degradation proceeds through the gamma-glutamyl cycle that is initiated, in all organisms, by the action of gamma-glutamyl transpeptidase. A novel pathway for the degradation of GSH that requires the participation of three previously uncharacterized genes is described in the yeast Saccharomyces cerevisiae. These genes have been named DUG1 (YFR044c), DUG2 (YBR281c), and DUG3 (YNL191w) (defective in utilization of glutathione). Although dipeptides and tripeptides with a normal peptide bond such as cys-gly or glu-cys-gly required the presence of only a functional DUG1 gene that encoded a protein belonging to the M20A metallohydrolase family, the presence of an unusual peptide bond such as in the dipeptide, gamma-glu-cys, or in GSH, required the participation of the DUG2 and DUG3 gene products as well. The DUG2 gene encodes a protein with a peptidase domain and a large WD40 repeat region, while the DUG3 gene encoded a protein with a glutamine amidotransferase domain. The Dug1p, Dug2p, and Dug3p proteins were found to form a degradosomal complex through Dug1p-Dug2p and Dug2p-Dug3p interactions. A model is proposed for the functioning of the Dug1p/Dug2p/Dug3p proteins as a specific GSH degradosomal complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。