Spermidine protects against acute kidney injury by modulating macrophage NLRP3 inflammasome activation and mitochondrial respiration in an eIF5A hypusination-related pathway

亚精胺通过调节巨噬细胞 NLRP3 炎症小体活化和线粒体呼吸在 eIF5A 低蛋白化相关通路中预防急性肾损伤

阅读:5
作者:Xianzhi Li #, Xiaojun Zhou #, Xigao Liu #, Xiaoyun Li, Xianzhou Jiang, Benkang Shi, Shuo Wang

Background

Acute kidney injury (AKI) is still a critical problem in clinical practice, with a heavy burden for national health system around the world. It is notable that sepsis is the predominant cause of AKI for patients in the intensive care unit and the mortality remains considerably high. The treatment for AKI relies on supportive therapies and almost no specific treatment is currently available. Spermidine is a naturally occurring polyamine with pleiotropic effects. However, the renoprotective effect of spermidine and the underlying mechanism remain elusive.

Conclusions

Spermidine administration practically protects against sepsis-induced AKI in mice and macrophages serve as an essential mediator in this protective effect. Our study identifies spermidine as a promising pharmacologic approach to prevent AKI.

Methods

We employed mice sepsis-induced AKI model and explored the potential renoprotective effect of spermidine in vivo with different administration time and routes. Macrophage depleting was utilized to probe the role of macrophage. In vitro experiments were conducted to examine the effect of spermidine on macrophage cytokine secretion, NLRP3 inflammasome activation and mitochondrial respiration.

Results

We confirmed that spermidine improves AKI with different administration time and routes and that macrophages serves as an essential mediator in this protective effect. Meanwhile, spermidine downregulates NOD-like receptor protein 3 (NLRP3) inflammasome activation and IL-1 beta production in macrophages directly. Mechanically, spermidine enhances mitochondrial respiration capacity and maintains mitochondria function which contribute to the NLRP3 inhibition. Importantly, we showed that eukaryotic initiation factor 5A (eIF5A) hypusination plays an important role in regulating macrophage bioactivity. Conclusions: Spermidine administration practically protects against sepsis-induced AKI in mice and macrophages serve as an essential mediator in this protective effect. Our study identifies spermidine as a promising pharmacologic approach to prevent AKI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。