Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets

人类阿尔茨海默病 iPSC 衍生的兴奋性神经元与同源野生型对照的单细胞膜片钳/蛋白质组学表明了新的病因和治疗靶点

阅读:6
作者:Swagata Ghatak, Jolene K Diedrich, Maria Talantova, Nivedita Bhadra, Henry Scott, Meetal Sharma, Matthew Albertolle, Nicholas J Schork, John R Yates 3rd, Stuart A Lipton

Abstract

Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。