Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus

转录谱分析确定了 BrlA 在应对氮耗竭中的作用以及 StuA 在调节烟曲霉次级代谢产物簇中的作用

阅读:5
作者:Kwame Twumasi-Boateng, Yan Yu, Dan Chen, Fabrice N Gravelat, William C Nierman, Donald C Sheppard

Abstract

Conidiation (asexual sporulation) is a key developmental process in filamentous fungi. We examined the gene regulatory roles of the Aspergillus fumigatus developmental transcription factors StuAp and BrlAp during conidiation. Conidiation was completely abrogated in an A. fumigatus DeltabrlA mutant and was severely impaired in a DeltastuA mutant. We determined the full genome conidiation transcriptomes of wild-type and DeltabrlA and DeltastuA mutant A. fumigatus and found that BrlAp and StuAp governed overlapping but distinct transcriptional programs. Six secondary metabolite biosynthetic clusters were found to be regulated by StuAp, while only one cluster exhibited BrlAp-dependent expression. The DeltabrlA mutant, but not the DeltastuA mutant, had impaired downregulation of genes encoding ribosomal proteins under nitrogen-limiting, but not carbon-limiting, conditions. Interestingly, inhibition of the target of rapamycin (TOR) pathway also caused downregulation of ribosomal protein genes in both the wild-type strain and the DeltabrlA mutant. Downregulation of these genes by TOR inhibition was associated with conidiation in the wild-type strain but not in the DeltabrlA mutant. Therefore, BrlAp-mediated repression of ribosomal protein gene expression is not downstream of the TOR pathway. Furthermore, inhibition of ribosomal protein gene expression is not sufficient to induce conidiation in the absence of BrlAp.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。