Improved limit of detection for zoonotic Plasmodium knowlesi and P. cynomolgi surveillance using reverse transcription for total nucleic acid preserved samples or dried blood spots

使用逆转录法对总核酸保存样本或干血斑进行检测,以提高人畜共患疟原虫和食蟹猴疟原虫监测的检测限

阅读:10
作者:Kamil A Braima, Kim A Piera, Inke N D Lubis, Rintis Noviyanti, Giri S Rajahram, Pinkan Kariodimedjo, Irbah R A Nainggolan, Ranti Permatasari, Leily Trianty, Ristya Amalia, Sitti Saimah Sakam, Angelica F Tan, Timothy William, Jacob A F Westaway, PingChin Lee, Sylvia Daim, Henry Surendra, Nathaniel Ch

Background

Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methodology/principal findings: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with reverse transcription (RT). Assay specificities were assessed using clinical malaria samples and malaria-negative controls. The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi) and 1000-fold (P. vivax and P. cynomolgi). The Kamau et al. Plasmodium genus RT-qPCR assay was highly sensitive for P. knowlesi detection with a median LOD of ≤0.0002 parasites/μL compared to 0.002 parasites/μL for P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were enhanced for the Imwong et al. 18S rRNA (0.0007 parasites/μL) and Divis et al. real-time 18S rRNA (0.0002 parasites/μL) assays, but not for the Lubis et al. hemi-nested SICAvar (1.1 parasites/μL) and Lee et al. nested 18S rRNA (11 parasites/μL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were moderately improved at 0.02 and 0.002 parasites/μL, respectively (1000-fold change). For DBS P. knowlesi samples the use of RT also markedly improved the Plasmodium genus qPCR LOD from 19.89 to 0.08 parasites/μL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusions/significance: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

Significance

Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。