Renin inhibition attenuates insulin resistance, oxidative stress, and pancreatic remodeling in the transgenic Ren2 rat

肾素抑制可减轻转基因 Ren2 大鼠的胰岛素抵抗、氧化应激和胰腺重塑

阅读:10
作者:Javad Habibi, Adam Whaley-Connell, Melvin R Hayden, Vincent G DeMarco, Rebecca Schneider, Susan D Sowers, Poorna Karuparthi, Carlos M Ferrario, James R Sowers

Abstract

Emerging evidence indicates that pancreatic tissue expresses all components of the renin-angiotensin system. However, the functional role is not well understood. This investigation examined renin inhibition on pancreas structure/function in the transgenic Ren2 rat harboring the mouse renin gene, a model of tissue renin overexpression. Renin is the rate-limiting step in the generation of angiotensin II (Ang II), which stimulates the generation of reactive oxygen species in a variety of tissues. Overexpression of renin in Ren2 rats results in hypertension, insulin resistance, and cardiovascular and renal damage. Young (6-7 wk old) insulin-resistant male Ren2 and age-matched insulin sensitive Sprague Dawley rats were treated with the renin inhibitor, aliskiren (50 mg/kg.d by ip injection), or placebo for 21 d. At 21 d, the Ren2 demonstrated insulin resistance with increased islet insulin, Ang II, and reduced total insulin receptor substrate (IRS)-1, IRS-2, and Akt immunostaining. There was increased islet nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subunits (p47(phox) and Rac1) as well as increased nitrotyrosine immunostaining (each P < 0.05). These functional abnormalities were associated with a disordered islet architecture; increased islet-exocrine interface, pericapillary fibrosis, and structurally abnormal mitochondria and content in endocrine and exocrine pancreas. In vivo treatment with aliskiren normalized systemic insulin resistance and islet insulin, Ang II, NADPH oxidase activity/subunits, and nitrotyrosine and improved total IRS-1 and Akt phosphorylation (each P < 0.05) as well as islet/exocrine structural abnormalities. Collectively, these data suggest that pancreatic functional/structural changes are driven, in part, by tissue renin-angiotensin system-mediated increases in NADPH oxidase and reactive oxygen species generation, abnormalities attenuated with direct renin inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。