Adriamycin induces cardiac fibrosis in mice via PRMT5-mediated cardiac fibroblast activation

阿霉素通过 PRMT5 介导的心脏成纤维细胞活化诱导小鼠心脏纤维化

阅读:4
作者:Xiao-Liang Dong #, Bao-Hui Yuan #, Sheng-Zhou Yu, He Liu, Xiao-Hua Pan, Jia Sun, Li-Long Pan

Abstract

Long-term treatment with adriamycin (ADR) is associated with higher incidences of cumulative cardiotoxicity manifest as heart failure. ADR-induced cardiomyopathy is characterized by extensive fibrosis that is caused by cardiac fibroblast activation. To date, however, no specific treatment is available to alleviate ADR-induced cardiotoxicity. Protein arginine methyltransferase 5 (PRMT5), a major enzyme responsible for methylation of arginine, regulates numerous cellular processes such as cell differentiation. In the present study we investigated the role of PRMT5 in cardiac fibrosis. Mice were administered ADR (3 mg/kg, i.p., every 2 days) for 2 weeks. We showed that aberrant PRMT5 expression was largely co-localized with α-SMA-positive activated cardiac fibroblasts in ADR-injected mice and in ADR-treated cardiac fibroblasts in vitro. PRMT5-overexpression exacerbated, whereas PRMT5 knockdown alleviated ADR-induced cardiac fibrosis in vivo and TGF-β1-induced cardiac fibroblast activation in vitro. We demonstrated that PRMT5-overexpression enhanced methylated-Smad3 levels in vivo and in vitro. Pretreatment with a specific PRMT5 inhibitor EPZ015666 (5 nM) or overexpression of a catalytically inactive mutant of PRMT5, PRMT5(E444Q), reduced PRMT5-induced methylation of Smad3, thus suppressing PRMT5-mediated cardiac fibroblast activation in vitro. Furthermore, ADR activated cardiac fibroblasts was depending on autocrine TGF-β1. Taken together, our results demonstrate that PRMT5 promotes ADR-induced cardiac fibrosis via activating cardiac fibroblasts, suggesting that it may be a potential therapeutic target of ADR-caused cardiotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。