Evaluation of a photoelectrochemical platform based on strontium titanate, sulfur doped carbon nitride and palladium nanoparticles for detection of SARS-CoV-2 spike glycoprotein S1

评估基于钛酸锶、硫掺杂氮化碳和钯纳米粒子的光电化学平台对 SARS-CoV-2 刺突糖蛋白 S1 的检测

阅读:5
作者:Chirlene N Botelho, Suringo S Falcão, Rossy-Eric P Soares, Silma R Pereira, Alan S de Menezes, Lauro T Kubota, Flavio S Damos, Rita C S Luz

Abstract

This work aims to develop a photoelectrochemical (PEC) platform for detection of SARS-CoV-2 spike glyprotein S1. The PEC platform is based on the modification of a fluorine-doped tin oxide (FTO) coated glass slide with strontium titanate (SrTiO3 or ST), sulfur-doped carbon nitride (g-C3N4-S or CNS) and palladium nanoparticles entrapped in aluminum hydroxide matrix (PdAlO(OH) or PdNPs). The PEC platform was denoted as PdNPs/CNS/ST/FTO and it was characterized by SEM, TEM, FTIR, DRX, and EIS. The PEC response of the PdNPs/CNS/ST/FTO platform was optimized by evaluating the effects of the concentration of the donor molecule, the nature of the buffer, pH, antibody concentration, potential applied to the working electrode, and incubation time. The optimized PdNPs/CNS/ST/FTO PEC platform was modified with 5 μg mL-1 of antibody for determination of SARS-CoV-2 spike glycoprotein S1. A decrease in the photocurrent was observed with an increase in the concentration of SARS-CoV-2 from 1 fg mL-1 to 1000 pg mL-1 showing that the platform is a promising alternative for the detection of S1 protein from SARS-CoV-2. The designed PEC platform exhibited recovery percentages of 96.20% and 109.65% in artificial saliva samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。