A Mutant of Africa Swine Fever Virus Protein p72 Enhances Antibody Production and Regulates the Production of Cytokines

非洲猪瘟病毒蛋白p72突变体增强抗体产生并调节细胞因子的产生

阅读:4
作者:Mingzhi Li, Yihao Wang, Quansheng Wang, Lingdi Yang, Shiguo Liu, Guangzhi Li, Ziqi Song, Chulu Huang, Lumei Kang, Yanni Zhang, Ting Wang, Lingbao Kong, Sha Li

Abstract

African swine fever virus (ASFV) is a severe threat to the global pig industry, and domestic pigs mostly develop severe clinical manifestations upon viral invasion. Currently, there is no available vaccine against ASFV. Its capsid structural protein p72 is one of the immuno-dominant proteins. In this study, we unexpectedly obtained a p72 mutant protein (p72∆377-428) which deleted the aa 377-428 within p72 and had stable and high expression in E. coli. Using SWISS-MODEL 1.0 software, the prediction showed that p72∆377-428 was quite distinct from the wild-type p72 protein in structure. p72∆377-428 induced stronger antibody production in mice on day 42 and 56 post immunization and could recognize ASFV-infected swine sera. p72∆377-428 reduced IFN-γ production in the splenocytes from p72∆377-428-immunized mice and p72∆377-428-treated swine macrophages compared to p72. p72∆377-428 also decreased the production of pro-inflammatory cytokine genes, including IL-1β, IL-6, and IL-12, compared to p72 in mice. Further, we found that p72∆377-428 reduced the induction of pro-inflammatory cytokine genes by inhibiting AKT phosphorylation and HIF1α expression. Taken together, these findings have implications for immunological function and the corresponding mechanism of ASFV p72, and our study indicates that p72∆377-428 could serve as a novel candidate for ASFV vaccines and diagnostic reagents.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。