S1P lyase inhibition prevents lung injury following high pressure-controlled mechanical ventilation in aging mice

S1P 裂解酶抑制可预防老年小鼠高压控制机械通气后的肺损伤

阅读:7
作者:M S Valentine, C Weigel, F Kamga Gninzeko, C Tho, M H Gräler, A M Reynolds, S Spiegel, R L Heise

Abstract

Ventilator-induced Lung Injury (VILI) is characterized by hypoxia, inflammatory cytokine influx, loss of alveolar barrier integrity, and decreased lung compliance. Aging influences lung structure and function and is a predictive factor in the severity of VILI; however, the mechanisms of aging that influence the progression or increased susceptibility remain unknown. Aging impacts immune system function and may increase inflammation in healthy individuals. Recent studies suggest that the bioactive sphingolipid mediator sphingosine-1-phosphate (S1P) and the enzyme that degrades it S1P lyase (SPL) may be involved in lung pathologies including acute lung injury. It is unknown whether aging influences S1P and SPL expression that have been implicated in lung inflammation, injury, and cell apoptosis. We hypothesized that aging and injurious mechanical ventilation synergistically impair S1P levels and enhance S1P lyase (SPL) expression that amplifies alveolar barrier damage and diminishes pulmonary function. Young (2-3 mo) and old (20-25 mo) C57BL/6 mice were mechanically ventilated for 2 h using pressure-controlled mechanical ventilation (PCMV) at 45 cmH2O and 35 cmH2O, respectively. We assessed the impact of aging and PCMV on several indications of acute lung injury, immune cell recruitment, S1P levels and SPL activity. Furthermore, we evaluated the protective effects of inhibiting SPL by tetrahydroxybutylimidazol (THI) administration on the negative outcomes associated with aging and mechanical injury. PCMV exacerbated lung injury in old mice and increased neutrophil influx that was further exacerbated due to aging. SPL expression increased in the young and old ventilated mice and the old nonventilated group. THI treatment reduced several of the indicators of lung injury and resulted in elevated S1P levels in lung tissue and plasma from mice that were injured from mechanical ventilation. CD80 and CD206 activation markers of alveolar and interstitial macrophages were also influenced by THI. SPL inhibition may be a viable therapeutic approach for patients requiring mechanical ventilation by preventing or regulating the exaggerated inflammatory response and reducing lung injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。