Dexmedetomidine alleviates cognitive impairment by reducing blood-brain barrier interruption and neuroinflammation via regulating Th1/Th2/Th17 polarization in an experimental sepsis model of mice

右美托咪啶通过调节 Th1/Th2/Th17 极化减少血脑屏障中断和神经炎症,从而减轻小鼠实验性脓毒症模型中的认知障碍

阅读:12
作者:Mi Tian, Wei Wang, Kai Wang, Peng Jin, Cameron Lenahan, Yao Wang, Jiaying Tan, Huimei Wen, Shuixiang Deng, Feng Zhao, Ye Gong

Abstract

Clinical studies have shown that dexmedetomidine (DEX) reduces mortality and inflammation in patients with sepsis, and ameliorates cognitive decline in both postoperative and critical care patients. This study aims to explain the neuroprotective effects provided by DEX in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Mice were treated with DEX intraperitoneally three times every two hours after CLP. The survival rate, body weight, and clinical scores were recorded each day. Morris water maze (MWM) and fear conditioning tests were used to evaluate cognitive function. Blood brain barrier (BBB) permeability, hippocampal inflammation, hippocampal neural apoptosis, and T helper (Th) cell subgroups were assessed. Furthermore, Atipamezole was used to verify that the potential neuroprotective effects in the sepsis-associated encephalopathy (SAE) were mediated by DEX. Compared with the Sham group, CLP mice showed significant cognitive impairment, BBB interruption, excessive neuroinflammation, and neuronal apoptosis. These detrimental effects of CLP were attenuated by DEX. Furthermore, we found that DEX corrects peripheral Th1/Th2/Th17 shift and reduces proinflammatory cytokines in the hippocampus. Additionally, atipamezole prevented DEX's protective effect. Taken together, DEX alleviates cognitive impairments by reducing blood-brain barrier interruption and neuroinflammation by regulating Th1/Th2/Th17 polarization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。