Infection outcome and cytokine gene expression in Brugia pahangi- infected gerbils (Meriones unguiculatus) sensitized with Brucella abortus

布鲁氏杆菌致敏的彭亨布鲁氏线虫感染沙鼠(长爪沙鼠)的感染结果和细胞因子基因表达

阅读:15
作者:Sharon R Chirgwin, Philip H Elzer, Sharon U Coleman, Jena M Nowling, Sue D Hagius, Matthew D Edmonds, Thomas R Klei

Abstract

Filarial infections have been associated with the development of a strongly polarized Th2 host immune response and a severe impairment of mitogen-driven proliferation and type 1 cytokine production in mice and humans. The role of this polarization in the development of the broad spectra of clinical manifestations of lymphatic filariasis is still unknown. Recently, data gathered from humans as well as from immunocompromised mouse models suggest that filariasis elicits a complex host immune response involving both Th1 and Th2 components. However, responses of a similar nature have not been reported in immunologically intact permissive models of Brugia infection. Brucella abortus-killed S19 was inoculated into the Brugia-permissive gerbil host to induce gamma interferon (IFN-gamma) production. Gerbils were then infected with B. pahangi, and the effect of the polarized Th1 responses on worm establishment and host cellular response was measured. Animals infected with both B. abortus and B. pahangi showed increased IFN-gamma and interleukin-10 (IL-10) and decreased IL-4 and IL-5 mRNA levels compared with those in animals infected with B. pahangi alone. These data suggest that the prior sensitization with B. abortus may induce a down regulation of the Th2 response associated with Brugia infection. This reduced Th2 response was associated with a reduced eosinophilia and an increased neutrophilia in the peritoneal exudate cells. The changes in cytokine and cellular environment did not inhibit the establishment of B. pahangi intraperitoneally. The data presented here suggest a complex relationship between the host immune response and parasite establishment and survival that cannot be simply ascribed to the Th1/Th2 paradigm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。