The RNA-binding protein Whi3 is a key regulator of developmental signaling and ploidy in Saccharomyces cerevisiae

RNA 结合蛋白 Whi3 是酿酒酵母中发育信号和倍性的关键调节因子

阅读:9
作者:Sarah Schladebeck, Hans-Ulrich Mösch

Abstract

In Saccharomyces cerevisiae, the RNA-binding protein Whi3 controls cell cycle progression, biofilm formation, and stress response by post-transcriptional regulation of the Cdc28-Cln3 cyclin-dependent protein kinase and the dual-specificity protein kinase Yak1. Previous work has indicated that Whi3 might govern these processes by additional, yet unknown mechanisms. In this study, we have identified additional effectors of Whi3 that include the G1 cyclins Cln1/Cln2 and two known regulators of biofilm formation, the catalytic PKA subunit Tpk1 and the transcriptional activator Tec1. We also provide evidence that Whi3 regulates production of these factors by post-transcriptional control and might exert this function by affecting translational elongation. Unexpectedly, we also discovered that Whi3 is a key regulator of cellular ploidy, because haploid whi3Δ mutant strains exhibit a significant increase-in-ploidy phenotype that depends on environmental conditions. Our data further suggest that Whi3 might control stability of ploidy by affecting the expression of many key genes involved in sister chromatid cohesion and of NIP100 that encodes a component of the yeast dynactin complex for chromosome distribution. Finally, we show that absence of Whi3 induces a transcriptional stress response in haploid cells that is relieved by whole-genome duplication. In summary, our study suggests that the RNA-binding protein Whi3 acts as a central regulator of cell division and development by post-transcriptional control of key genes involved in chromosome distribution and cell signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。