Ultra-fast adsorption of radioactive technetium (99mTc) by using mining waste clay samples, Abu-Tartur, Egypt

利用采矿废弃粘土样品对放射性锝 (99mTc) 进行超快速吸附,埃及阿布塔尔

阅读:3
作者:Ahmed Saleh Ahmed, Walaa Ali Hassan, Mohamed Abdel-Moneim Mohamed, Ezzat Abdalla Ahmed, Nagih M Shaalan, Mostafa Ragab Abukhadra

Abstract

In this study, we have opened a great route to fabricate a high-performance nanocomposite for various functional applications based on the composite of a natural stone. A clay sample (black shale (B.Sh)) was collected from the Abu-Tartur area in Egypt. The black shale was organically modified with organic materials in our laboratory, which is called organo-black shale (O-B.Sh). The samples were characterized by XRD, FTIR, SEM, and XRF. These techniques confirmed that the samples have multi-oxide phases with approximately SiO2 at 54.1%, Al2O3 at 24.73%, Fe2O3 at 6.02%, K2O at 1.12%, MgO at 1.09%, and Na2O of 0.09%, as calculated by XRF. The two samples were applied to the adsorption processes of the radioactive technetium materials, which have been used for the medical treatment of the cancer institute of Upper Egypt. The adsorption processes were performed at various concentrations of the radioactive material and various amounts of clay samples. The as-collected B.Sh sample showed an adsorption activity of 65%, however, the organically modified materials showed a high adsorption rate toward technetium reaches to 100% in a very short time and without any further process. The present collected materials are very promising to withdraw the radioactive materials from the saline solution to save human and environmental health. We believe these multi-compound composites may open a new approach for creating new fabric composites with high performance for various applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。